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Since noxious stimulation usually leads to the perception of pain, pain has traditionally been considered sen-
sory nociception. But its variability and sensitivity to a broad array of cognitive and motivational factors have
meant it is commonly viewed as inherently imprecise and intangibly subjective. However, the core function
of pain is motivational—to direct both short- and long-term behavior away from harm. Here, we illustrate that
a reinforcement learning model of pain offers a mechanistic understanding of how the brain supports this,
illustrating the underlying computational architecture of the pain system. Importantly, it explains why pain
is tuned by multiple factors and necessarily supported by a distributed network of brain regions, recasting
pain as a precise and objectifiable control signal.
Despite the advent of brain imaging, a clear picture of how pain is

processed in the brain has been much harder to unravel than

anticipated, being beset by three problems. First, pain is associ-

ated with robust responses in multiple and diverse brain regions,

most of which are not specific to pain (at least on a macroscopic

scale), and so it has been hard to ‘‘pin down’’ the pain system to

any specific brain region. Second, pain is an inherently private

percept, but an individual’s self-reports of pain can vary widely

from moment to moment, and it has remained unclear whether

this fluctuation represents irreducible noise and subjectivity or

a precise tuning of pain based on hidden factors. Third, pain is

exquisitely sensitive to a broad range of emotional, environ-

mental, and cognitive factors—a phenomenon called endoge-

nous modulation. Although this has led to an appreciation that

pain is more than a simple readout of nociceptive input, it has

not led to any satisfactory unified explanation as to what pain

really is. This has left the view that pain is simply a highly variable

and malleable representation of assumed actual or potential

tissue damage.

In this review, we propose a model of pain that centralizes its

role as a learning and control signal and argue that this can solve

these problems. We begin with a perspective of how theories of

pain have evolved over recent decades, and how insights have

emerged that have moved thinking beyond purely sensory

accounts of pain. We then argue that current accounts still

don’t fully capture how pain controls behavior to minimize

harm, which is its primary function. Importantly, although this is

often achieved by immediate nocifensive responses, a substan-

tial part of this comes from learning—allowing an animal to miti-

gate or avoid predictable harm long into the future. The founda-

tions of a learning account of pain are rooted in psychological

models of animal learning, and we describe how these can be

developed in computational terms to provide a mechanistic

model of the architecture of the pain system. Critically, we argue

that this requires pain to be shaped by a set of factors to optimize

its role as a learning and control signal and review evidence that
suggests that a great deal of examples of endogenous control

can be explained by this process. Finally, we briefly describe

how the model offers potential insights into how pain might

become chronic under certain conditions.

Background
There is a long history of theories and constructs that have

attempted to capture the complex phenomenology of pain, but

a number of models have played a particularly important role in

evolving current concepts of pain. Against a historically domi-

nant view that pain could be understood as a sensory system

like any other, Melzack and Casey (1968) highlighted what they

called the ‘‘man-in-the-brain’’ problem that this seemed to

create—the idea that the main function of the pain system was

to inform some conscious module of the nature of a particular

nociceptive stimulus. Instead, they proposed the tripartite

model, in which sensory-discriminative, affective-motivational,

and cognitive-evaluative components are processed as part-

independent, part-interacting pathways (Melzack and Casey,

1968). In this model, rather than the control of protective

behavior being merely downstream to sensory processing,

they argued it was an intrinsic and fundamental part of pain

experience, not least because pain was clearly sensitive to so

many motivational and cognitive factors. A key substrate for

modulation, namely descending pathways acting on dorsal

horn neurons, had already been proposed in gate control theory

(Melzack andWall, 1965). And in the brain, themodel implied that

different dimensions would involve multiple different cerebral

loci—a premonition of the distributed pattern of cortical and

subcortical pain responses that was later revealed by functional

neuroimaging (Jones et al., 1991; Treede et al., 1999).

In light of the neurophysiological characterization of many

pain-specific receptors and ascending pathways, Craig subse-

quently proposed the homeostatic model, in which sensory and

motivational dimensions are inherently integrated as a single sys-

tem, involving pain-specific lateral thalamocortical projections to
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the insula cortex (Craig, 2002, 2003). Craig placed pain alongside

other ‘‘interoceptive’’ sensations such as temperature, itch, and

pleasant touch, as systems supporting bodily perception with

intrinsic motivational value, with this value related to the core ho-

meostatic drive to maintain the integrity of the body. This model

proposed a hierarchical sensory processing stream from poste-

rior to anterior regions of insula cortex, with this hierarchy explic-

itly tied to physiological and behavioral homeostasis. However, it

was still largely unclear exactly how homeostatic behaviors were

actually implemented, and why pain was modulated by so many

factors.

The idea that, as a motivational system, pain was directly

modulated as a decision by the system itself was most clearly

articulated in Fields’ motivation-decision model (Fields, 2006,

2018). The model proposed that pain was inhibited when over-

shadowed by more important reward- or escape-orientated

goals, with descending control mediated by opioid pathways

via the periaqueductal gray (PAG) and rostral ventral medulla

(RVM) (Basbaum and Fields, 1984). The model also highlighted

the fundamental role of pain in learning and the control of avoid-

ance and escape, and this explicitly motivational perspective

viewed pain as controlling not just immediate responses to

limit tissue damage, but also long-term role harm minimization

through learned escape and avoidance (Johansen et al., 2001;

Navratilova et al., 2012). This re-conceived pain as an inherently

predictive system, not simply passively recording nociceptive

inputs, in which the generation of pain predictions and expecta-

tions are central to the function of central pain circuits.

A central role for expectation and prediction also underlay the

idea that pain involves a statistical (e.g., Bayesian) inference

resulting from integration of prior expectancy and incoming

nociceptive input (Brown et al., 2008; Seymour and Dolan,

2013; Morton et al., 2010; Anchisi and Zanon, 2015; Tabor

et al., 2017; Ongaro and Kaptchuk, 2019). More formally, Buchel

proposed the predictive coding model (B€uchel et al., 2014),

involving a hierarchical processing stream from spinal cord to

PAG, thalamus, and posterior-to-anterior insula (Geuter et al.,

2017; Grahl et al., 2018; Ozawa et al., 2017). In this context,

expectations can be acquired through multiple means—through

instructed information, learning (i.e., conditioning), and through

observation (Wiech, 2016; Tabor et al., 2017)—and suggested

that descending control might be implementing top-down pre-

dictions and their uncertainties, to be integrated by ascending

nociception information and prediction errors. In so doing, this

provided an explanation of a set of instances of endogenous

control, especially expectancy-based biases and placebo and

nocebo responses.

However, inferential theories of pain processing leave open an

account of how the motivational function of pain is directed.

At an abstract level, concepts such as Friston’s Free Energy

Framework propose that sensation, motivation, and action are

intrinsically related by their drive to understand the causes of

unexpected stimuli (Friston, 2010), and the notion of ‘‘active

inference’’ describes how actions can be conceived to ultimately

reflect minimization of future unexpected sensory instances of

pain (Tabor and Burr, 2019). But understanding how the brain

actually achieves this is much more complex (Pezzulo et al.,

2015), and none of the existing models fully capture how the
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pain system successfully balances stimulus identification, infor-

mation seeking, harmminimization, and, perhaps most critically,

speed. Below, we outline a computational architecture of the

pain system that may achieve this, based on a framework called

reinforcement learning (RL). In so doing, this casts light on the

fundamental question of what the conscious perception of pain

really reflects: an optimal inference of a real or presumed noci-

ceptive stimulus, or an optimal control signal to minimize current

and future nociceptive stimuli?

The RL Model
Underlying the evolution of these concepts is the central idea

that pain must be understood in the context of behavioral control

to minimize current and future harm. Fundamental to this

concept is learning: over and above the fact that pain elicits

immediate defensive responses (withdrawal, orientation, etc.),

it must also guide learning to optimize future responses. To illus-

trate this, consider a child touching a hot stove: although the im-

mediate response limits the severity of any burn, themain benefit

is though the sum of future instances when they don’t touch

stoves because they have a pain system. Therefore, what has

driven the evolution of the architecture of the pain system is its

role as a learning signal to prospectively reduce harm. But under-

standing how the brain achieves this exposes a fundamental

problem that any experience-based control system must solve:

the credit assignment problem (Bellman, 2013).

The Credit Assignment Problem

Harm minimization is both a clearly definable and objectively

measurable function and is based on the ability to learn from

trial-and-error interaction with the world. This allows actions

that terminate (escape) or completely avoid pain and has been

well studied in humans and animal learning using Pavlovian

(classical) and instrumental (operant) conditioning (Mackintosh,

1983). Most of these paradigms consider simple one-step

escape or avoidance, in which pain is predicted by a single pre-

ceding cue, which subsequently elicits an appropriate response.

However, real-world learning often involves much longer se-

quences of events, which makes the problem of prediction and

avoidance more difficult. For instance, if a series of 5 actions

leads to pain at the end, how do you know which of the 5 actions

was the mistake (Figure 1A)? This problem is referred to as the

credit assignment problem, which is a well-known problem in

engineering and control theory (Bellman, 2013).

The credit assignment problem can be solved using a class of

learning rule from the field of RL (Sutton and Barto, 1998). RL is

effectively an extension of psychological learning models, such

as the Rescorla-Wagner model (Rescorla and Wagner, 1972).

The Rescorla-Wagner model is usually applied to one-step

learning and uses a prediction error term—the difference be-

tween what was expected and observed—to update future pre-

dictions. But this doesn’t work well if the outcome is far into the

future. RL models, on the other hand, don’t need to wait for the

outcome and simply use the next available prediction (formalized

as the value) as a proxy for the outcome. That is, they store a

value term for each action and state and compute the difference

between values at each successive time step, taking into ac-

count any reward and punishment experienced on the way (Sut-

ton and Barto, 1998). Effectively, this allows pain predictions to



Figure 1. The Credit Assignment Problem and RL Framework
(A) RL provides an algorithmic framework for learning how to make optimal predictions and actions based on trial-and-error interaction with the world, in which
salient outcomes (reward and punishment) can be sensed. In particular, it aims to solve the problem of correctly allocating predictive value to preceding states, in
terms of the outcomes they eventually predict, when the transition through states of the world is either passive (not under the agent’s control, as in Pavlovian
learning) or active (determined by the agent’s actions, as in instrumental learning).
(B) This is achieved by using a prediction error term to update state or action values, which effectively transfer value predictions back in time to the earliest
predictor. Here, the prediction error is equal to the difference between the current prediction, and the sum of the subsequent prediction plus any outcome
experienced at this next state.
(C) The agent-environment interface illustrates the basic architecture comprising the agent (which learns values, computes prediction errors, and selects actions),
the internal environment (which represents states and outcomes), and the external environment (which contains the sensed objects).
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be learned by looking at differences in predictions through time,

which passes the prediction back to the earliest reliable predic-

tor (Figure 1B). This error-based mechanism can be applied to

passive predictions (learning state values) or active predictions

(learning action values).

Figure 1C shows the basic architecture of RL control. By

sensing the external environment, the organism’s brain gener-

ates an internal representation of the current state (e.g., from

visual information) and any salient outcomes (e.g., from nocicep-

tion). This information is passed to an ‘‘agent’’ that decides what

responses or actions to emit based on the current stored state

and action values and then updates these values based on the

next state (Sutton and Barto, 1981). In this architecture, ‘‘pain’’

is the internal reinforcement signal used for learning and is

distinct from the nociceptive sensing process (in the same way

that reward is distinct from the sensory properties of a reinforcer;

Singh et al., 2009).

From its initial demonstration (Seymour et al., 2004), there is

now substantial evidence that pain controls behavior using an

RL-based strategy, and that this involves a hierarchy of control

processes. These are built on a basic system of innate

responses that exists across species, and, working together,

coordination of these control processes provides a highly effec-

tive way of minimizing future harm (Figure 2). Below, we outline

the key aspects of each, and how they fit together to control

pain behavior.

Innate Responses

Nociceptive stimulation produces a broad and diverse set of mo-

tor, autonomic, and behavioral defensive responses that are
stimulus specific, situation specific, and species specific (Bolles,

1971; Fanselow and Lester, 1988). Innate responses are precise,

sophisticated, and rapid—driving defensive activity within a few

hundred milliseconds. They are also remarkably strong, over-

whelming other ongoing behavioral activity (which, as we explain

later, has critical implications for the organization of endogenous

control mechanisms). These features are reflected in the corre-

sponding neural substrates within a highly complex network of

spinal and brainstem connections, including dorsal horn circuits

governing motor responses, brainstem autonomic nuclei, and

hypothalamic-PAG circuits driving basic behavioral programs

(Fanselow, 1994; Craig et al., 1998).

Pavlovian Learning

Pavlovian learning allows innate responses to be activated

in advance of a harmful stimulus—offering the chance to prepare

for, reduce, or even completely avoid it (Mackintosh, 1983;

Bolles, 1972). Any sensory cue that reliably precedes pain can

act as a predictor (a ‘‘conditioned stimulus’’), and it is known

that acquisition of the response (the ‘‘conditioned response’’)

depends on prediction errors. Importantly, evidence suggests

that the brain learns higher-order pain prediction errors—allow-

ing the prediction to be transferred back in time to the earliest

reliable predictor, in accordance with an RL solution to the credit

assignment problem (Seymour et al., 2004). Pavlovian pain re-

sponses can be divided into two categories: pain-specific re-

sponses, which tend to be well-timed motor responses thought

to be mediated by cerebellar learning (e.g., leg flexion or eye

blink to foot or eyelid shock, respectively), and non-specific re-

sponses common to many aversive stimuli (such as withdrawal
Neuron 101, March 20, 2019 1031



Figure 2. The RL Model of Pain
This schematic details the computational architecture of the pain system. Basic brain representations of pain receive ascending spinal nociceptive input and are
used to generate the internal reinforcement signal that is used for control. These feed into separate control systems that control behavior: (1) an innate pain
response system; (2) state-based, Pavlovian learning; (3) associative action-outcome learning (model-free habit learning), and (4) a cognitive (model-based)
action learning and planning system. Collectively, learning and responses/actions emerge through pavlovian-instrumental (P-I), and model-based-model-free
interactions. Model simulation produces rapid, efficient harm avoidance, and outperforms single system models and conventional control systems for auton-
omous agents in terms of safe learning (Elfwing and Seymour, 2017). Endogenous control from these controllers reciprocally modulates the sensory pain
pathway.
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and autonomic arousal), which involve coordinated subcortical

network including the amygdala, ventral putamen, ventral PAG,

VTA, and dorsal raphe (Groessl et al., 2018; Herry and Johansen,

2014; Zhang et al., 2016). These dissociable systems positively

interact with each other (Betts et al., 1996; Pearce et al., 1981)

and negatively interact with reward learning circuits (Seymour

et al., 2005; Konorski, 1948). Pavlovian predictions are sensitive

to uncertainty, which enhances the learning rate and controls

autonomic responses such as skin conductance putatively

through an amygdala-dependent process (Li et al., 2011; Boll

et al., 2013; Zhang et al., 2016). Pavlovian values also generalize

to perceptually and conceptually similar cues, allowing pain pre-

dictions to be made to novel stimuli in an efficient way (Onat and

B€uchel, 2015; Dunsmoor et al., 2011; Dunsmoor and Kroes,

2019; Koban et al., 2018).

Instrumental Learning

Whereas Pavlovian learning effectively deals with state learning

(that is, conditioned responses generally prepare for but don’t

fundamentally change the probability of pain), instrumental

learning allows novel actions to be learned according to their
1032 Neuron 101, March 20, 2019
outcomes, and so fundamentally influence the probability of their

occurrence (Mackintosh, 1983). For pain, this involves escape

(from persistent pain) and avoidance (of phasic pain). Current

evidence suggests that the brain employs a parallel system in

which action values for relief and pain are simultaneously learned

and interact to guide choice (Seymour et al., 2012; Eldar et al.,

2016). Indeed, there is a specific advantage to learning these

two values separately: relief values can approximate the best-

case scenario of future actions (‘‘what to do’’), and pain values

can approximate the worst-case scenarios (‘‘what not to do’’),

and the two values can in principle be integrated together to

guide action (‘‘multi-attribute RL’’). Learning these two values

separately in this way conserves information and allows for safer

behavior (Elfwing and Seymour, 2017).

Instrumental learning involves reciprocal interactions with the

Pavlovian system. Pavlovian values and prediction errors guide

both the learning (e.g., two-factor theory [Maia, 2010; Moutous-

sis et al., 2008]) and expression (e.g., conditioned reinforcement,

conditioned suppression, Pavlovian- instrumental transfer [Sey-

mour et al., 2005; Lawson et al., 2014; Talmi et al., 2008]) of
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instrumental actions. Neurobiologically, escape and avoidance

are implemented in similar circuits to Pavlovian learning and

specifically involve posterior putamen and amygdala circuits

(Menegas et al., 2018), with connections to ventromedial pre-

frontal regions encoding action values themselves (Seymour

et al., 2012; Roy et al., 2014). Generalization of avoidance

actions involves independent process for generalization of

pain-predictive (insula cortex) and relief-predictive (ventromedial

prefrontal cortex [VMPFC]) action values (Norbury et al., 2018).

Cognitive Learning

In the systems described above, both Pavlovian and instru-

mental learning involve a process by which the brain learns a

simple scalar value of a state or action and use this value to guide

responses and choices, respectively, in the absence of any inter-

nal model (‘‘model-free learning’’). However, humans clearly

have enormous capacity to build much more sophisticated rep-

resentations of pain, events, and contexts and use them to guide

deliberative behavior. Under the umbrella term of cognitive

learning or ‘‘model-based’’ learning, these cognitive representa-

tions can encode specific states, actions, and pain and formulate

an internal model of the individual and their environment (Tol-

man, 1948; Dayan and Daw, 2008). Such an internal model can

support explicit planning, evaluation (i.e., the ability to report a

pain prediction or intensity judgment), instructed and observa-

tional learning, and episodic memory.

Computationally, by encoding an internal map of the world,

cognitive learning can infer the presence of ‘‘hidden states’’

and the structure of abstract rules, including the decision pol-

icies of other intelligent agents (Behrens et al., 2018). Accord-

ingly, it provides a model-based mechanism that subsumes

both Pavlovian and instrumental learning (Gershman et al.,

2015). That is, cognitive processes are likely to be routinely

involved in simple Pavlovian and instrumental tasks, allowing

a more sophisticated representation of task structure than is

possible than using simpler ‘‘model-free’’ learning algorithms

(Rescorla, 1988). Naturally, however, defining precisely what al-

gorithms are used in cognitive learning is much more difficult to

ascertain, simply due to the potential for complexity (Daw and

Dayan, 2014). In the case of Pavlovian conditioning, however,

Bayesian models can be shown to explain several aspects of

learning difficult to explain using simpler RL algorithms (Courville

et al., 2006). More generally, the notion of model-free andmodel-

based control across state and action learning scenarios is

embedded in a long literature of emotional and habitual behavior,

versus deliberative cognition (Daw, 2018). However, the reality

may be more complex, and, at least in the case of reward, there

is evidence that the brain uses intermediate computational stra-

tegies that have features of both model-free and model-based

learning (Momennejad et al., 2017).

Neurobiologically, cognitive learning and decision-making

structures for pain are likely to includemultiple regions of prefron-

tal cortex, including ventrolateral and dorsolateral PFC, anterior

cingulate, and hippocampal regions (Atlas et al., 2016; Olsson

and Phelps, 2007; Jeon et al., 2010; Carter et al., 2006; LeDoux

and Daw, 2018; Qi et al., 2018). Importantly, there is evidently

overlap in many brain regions identified in cognitive learning and

simpler learning schemes, especially regions such as the amyg-

dala and striatum (Madarasz et al., 2016; Koban et al., 2017).
Conscious Pain Perception and Interactions between

Controllers

In the RL framework, the ‘‘pain’’ signal acts as the primary teach-

ing signal that drives the learning of values. This raises the ques-

tion as to whether this reflects the conscious perception of pain

or exists as a distinct, subconscious entity. The multi-controller

architecture does not necessarily mean that each controller

uses precisely the same reinforcement signal, and, because

innate defense responses need to be rapid, they are inextricably

linked to nociceptive input from the very earliest parts of the

ascending pathway. However, slower and computationally so-

phisticated sensory processing of nociceptive signals can be

used by the higher cognitive controller, which is clearly directly

associated with conscious processing (i.e., working memory,

explicit reasoning, and planning). Furthermore, it must be the

case that conscious pain can exert a direct effect on cognitive

learning and control, because, even if the conscious perception

of pain emerged as some sort of epiphenomenon of neural pro-

cessing, its perception would still lead to avoidance of this state

in the future, given the choice. For this reason, at the very least

conscious pain must act as a control signal related to cognitive

learning systems.

More broadly, cognitive processes are built atop a hierarchy

that involves multiple facilitative interactions between layers.

Although such an architecture seems complex, computationally

it is highly efficient (Piccolo et al., 2018; Lee et al., 2019). For

instance, exposure to an unexpected pain stimulus recruits the

innate and Pavlovian systems first, to provide rapid, safe defense

using evolutionarily learned information. This sets the ‘‘action

priors’’ upon which a cognitive system can evaluate the causes

of pain based on building a model of what happened, allowing

rapid learning and inference of optimal defensive responses.

When these responses can lead to the reliable avoidance of

pain, the basic (model-free) instrumental system takes over

control, which provides computational efficiency and can help

protect against unnecessary influence by random noise (Wang

et al., 2018; Daw et al., 2005). Overall, each system is

optimal in a given situation, and as a whole the architecture bal-

ances speed and computational efficiency at one end, with

computational sophistication at the other. The caveat, however,

may be a necessary susceptibility to impulsiveness and compul-

siveness, mostly due to the strength of innate and Pavlovian

systems (Lloyd and Dayan, 2018; Millner et al., 2018; Robbins

et al., 2012).

Endogenous Control
The RL framework shows how potential harm can be minimized

through a nested hierarchy of controllers. This raises the ques-

tion as to whether we should expect pain to be a fixed, stable

signal that faithfully represents the nociceptive signal, or a flex-

ible signal that adapts to the current learning context. As we

discuss below, the RL architecture indeed indicates that pain

should be modulated by a number of factors if it is to operate

optimally as a control signal.

Modulation by Sensory Inference

The available evidence suggests that the RL control hierarchy

has a corresponding sensory processing hierarchy, with crude

spinal and brainstem nociceptive input feeding into lower
Neuron 101, March 20, 2019 1033
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controllers, and conscious pain feeding into higher controllers at

the top (Figure 2). The function of sensory processing hierarchies

is to allow the optimal estimate of the properties—such as the

intensity—of the external stimulus (Seymour and Dolan, 2013;

B€uchel et al., 2014; Tabor et al., 2017). This estimate is ultimately

an inference made based on prior experience and other relevant

information, including simple predictive contingencies, multi-

sensory integration, instructed knowledge, or observed knowl-

edge. Based on the assumption that the incoming nociceptive

input is inherently noisy, inference will improve the estimate of

the true intensity. Computationally, sensory inference is typically

proposed to approximate some sort of Bayesian inference (Co-

lombo and Seriès, 2012; Knill and Pouget, 2004) and can in prin-

ciple explain why pain perception is routinely biased toward prior

knowledge (Colloca and Benedetti, 2006; Anchisi and Zanon,

2015; Seymour and Dolan, 2013; Wiech, 2016; Atlas et al.,

2010). And it is consistent with the observation that the magni-

tude of this bias depends on the certainty of the prior information

(Brown et al., 2008; Yoshida et al., 2013). The inferred estimate

may also be asymmetrically weighted by the cost of errors (i.e.,

under-estimating pain may be more costly than over-estimating

[Rachman and Arntz, 1991]). When errors do occur (for instance,

when the discrepancy between prior and incoming nociceptive

information reaches a threshold), then the information within

the prior may need to be relearned, weakening its capability to

bias future pain due to its increased uncertainty, but enhancing

the way the information is used in the long run (Yu and Dayan,

2005; Hird et al., 2018). Although evidence suggests that in the

case of pain, disconfirming sensory evidence may be relatively

under-weighted (Jepma et al., 2018). Overall, however, modula-

tion during perceptual processing creates a more accurate pain

signal that is available to higher (cognitive) RL control.

Modulation by Predictive Value

A key feature of the RL model is that it deals with sequential

stimuli—predicting outcomes both near and far in the future.

This accommodates the fact that pain can both act as both a

reinforcer (i.e., an outcome or an unconditioned stimulus, US)

and a cue for other motivationally salient outcomes (a predictor,

or conditioned stimulus, CS). That is, pain can predict its own

termination, explicit reward, or more pain (Gerber et al., 2014;

Fields, 2018; Navratilova et al., 2015)—indeed, anything that im-

proves or worsens homeostasis (Keramati and Gutkin, 2014).

This means that the aversiveness of pain incorporates two quan-

tities—its inherent (aversive) value as an outcome and its value

as a predictor. For instance, in Pavlovian counter-conditioning,

a subject might learn to predict a food reward following a pain

stimulus: after training, the pain stimulus elicits no observable

aversive response, only appetitive (positive) responses antici-

pating food (Eroféeva, 1921). Here, it is clear that the modulation

of pain must be at an early level for defensive motor responses

to be lost, but also that the pain stimulus continues to act as

a discriminative stimulus despite being modulated, implying

that, at some level, modulation of pain must have a degree of

selectivity to preserve discriminative information (Melzack and

Casey, 1968).

Pain can also be a predictor for more pain, which will enhance

its aversiveness and raises the issue of how the duration to the

next pain influences its aversive valuation. Evidence indicates
1034 Neuron 101, March 20, 2019
that two processes are at work—temporal discounting and

dread. Temporal discounting is a well-supported assumption in

most RL models by which people discount future events as

a function of distance into the future (Sutton and Barto, 1998;

Frederick et al., 2002). But people also find the process of antic-

ipating pain inherently aversive in its own right—a phenomenon

called dread—which often causes them to choose sooner over

distant pain (e.g., for a necessary dental procedure, people

might want to ‘‘get it out of the way’’ sooner so they don’t

need to worry about it) (Loewenstein, 1987; Berns et al., 2006).

Hence, the net behavior is the combination of a dread function

with a discount function, which leads to an ‘‘n’’-shaped prospec-

tive function in which predictions of future pain have an interme-

diate peak aversive latency (Story et al., 2013).

It is also possible for temporal patterns of pain to act as predic-

tors. In a classic example, decreasing pain is felt as less aversive

than increasing pain—the so-called ‘‘peak-end’’ effect (Kahne-

man et al., 1993, 1997). This implies that either temporal con-

structs can act as a cues for associative learning, or that people

build a more sophisticated internal model (memory) of the

episode to support prediction (Fiser et al., 2010).

Modulation by Decision Conflict

The RL model mediates a broad array of responses and actions,

from autonomic and physiological responses, reflexive motor

responses (e.g., limb withdrawal), innate behavioral programs

(freeze, fight, or flight), communicative responses (facial expres-

sion and vocalizations), and any type of instrumental motor ac-

tion (such as pressing a keyboard in a pain experiment). Within

this set, emission of some types of response can occur indepen-

dently of others—for instance, pressing a key will not interfere

with a heart rate response or facial expression. But other types

of response will: for instance, innate motor responses may well

interfere with instrumental actions that might be more important,

such as escape from danger or acquisition of a large reward that

outweighs the magnitude of the pain (Maier et al., 1982; Fields,

2006, 2018; Dayan et al., 2006). The problem the pain system

has in managing this decision conflict is that because the innate

responses are relatively hard-wired early in the ascending pain

pathway, which is necessary to elicit rapid responses, the only

way to suppress innate responses is to suppress nociceptive af-

ferents when or soon after they enter the dorsal horn of the spinal

cord. That is, it may not be feasible to selectively modulate innate

responses without modulating ascending pain signals at the

same time. This means that when instrumental decision circuits

prioritize reward seeking over pain avoidance or escape, or

when active instrumental avoidance or escape involves actions

different from innate avoidance or escape, then pain is endoge-

nously reduced (Dum and Herz, 1984).

Decision conflict may also operate at the level of cognition,

since pain inherently drives attention, learning, and planning

(Legrain et al., 2009; Van Damme et al., 2010). Thus, in the

face of a competing and more significant goal (i.e., escape or

large reward), painmay interfere with and disruptmore important

cognitive processes (Eccleston and Crombez, 1999). Just as it is

the case that two physical actions may be incompatible (such as

simultaneously moving in two directions), two ‘‘mental’’ actions

may also be incompatible (such as planning to simultaneously

move in two different directions) (Brown et al., 2016). Thus,



Box 1. Key Predictions of the RL Model

d Opposite effects of controllability and uncertainty on phasic and tonic pain. The model proposes that uncertainty and

controllability relate to a greater marginal benefit to learning, and phasic pain should be enhanced accordingly. However, in

the case of tonic pain, its relief acts as the teaching signal, and ongoing pain has a direct suppressive effect on cognition,

and so ongoing pain should be reduced to enhance relief learning. Existing support for this ismixed (Yoshida et al., 2013; Brown

et al., 2008; Zaman et al., 2017; Br€ascher et al., 2016; Wiech et al., 2006; Salomons et al., 2007; Zhang et al., 2018a), partly

because uncertainty is not always studied in the context of controllability, and increased controllability often results in reduced

uncertainty, leaving this issue to be fully demonstrated.

d Endogenous control should drive exploration. If a core function of endogenous control is to facilitate information acquisition,

this should be reflected in choice, and manifest by a direct relationship between pain modulation and exploratory action.

Furthermore, this should also be sensitive to the expected benefit of this information to future behavior—i.e., a greater

opportunity to exploit information relates to greater endogenous control (cf. Wilson et al., 2014).

d Pain discrimination is preserved during endogenous analgesia. If pain can act as both a cue and an outcome, it is important

that the capacity to discriminate pain remains unimpaired in the context of endogenous control. Although evidence suggests

that descending modulatory pathways have a selective end target in the dorsal horn (Heinricher et al., 2009), there is yet no

behavioral evidence, for instance, that fine discrimination (e.g., spatial or intensity) is preserved in endogenous analgesia.
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decision conflict may invoke endogenous control at both the

level of action and cognition.

Modulation by Informational Value

The fact that attention and controllability reliably modulate pain

(Eccleston and Crombez, 1999; Wiech et al., 2006; Yoshida

et al., 2013; Salomons et al., 2007, 2015; Taylor et al., 2017;

Br€ascher et al., 2016), beyond that which can be explained by

mechanisms above, suggests that factors intrinsic to learning

and control specifically modulate pain. Although the goal of RL

is to learn tominimize pain as an objective function, performance

can be enhanced by intrinsically modulating pain according to its

informational value in learning. This is because the prospective

benefit of learning is not a fixed quantity but varies according

to how much there is to learn (uncertainty), how long there is to

exploit learnable information (opportunity), and the capability to

exploit it (controllability). In the case of reward, such intrinsic

modulation of decision value is well recognized (for instance, in

novelty seeking and uncertainty seeking) and helps solve the

exploration-exploitation problem of trial-and-error learning (i.e.,

information sampling [Wilson et al., 2014;Wittmann et al., 2008]).

In the case of pain, therefore, the magnitude of a phasic pain

stimulus should be enhanced if uncertainty, opportunity, and

controllability are high, because the marginal benefit of learning

is higher. More precisely, the model predicts these factors

should interact, because the benefit of learning is only manifest

if the opportunity and controllability are both significant (Zhang

et al., 2018b) (see Box 1). In the case of learning relief from tonic

pain, the opposite effect should occur (i.e., background pain

should be reduced if the benefit to learning about relief is high),

because the object of learning is relief, not pain (and persistent

pain exerts a tonic control effect on behavior, as we discuss

below). This appears to be the case—relief uncertainty reduces

background tonic pain when relief uncertainty is high, when relief

is controllable (Zhang et al., 2018a).

Across these demonstrations, uncertainty-based modulation

reflects the mechanism underlying what is conventionally

considered attention or salience (Eccleston and Crombez,

1999). This spans attention that is driven by bottom-up pro-

cesses learned through trial and error (i.e., lots of errors equate
to high uncertainty), or top-down processes provided by external

cues or instruction. In all cases, the effect is to enhance learning

and guide choice in a way that benefits long-run prospects.

Thus, any relatively unexpected change in persistent or repetitive

pain will have a modulatory effect: reductions in persistent noci-

ceptive stimulation will cause an exaggerated reduction in pain

perception, and increases in nociceptive stimulation will cause

an exaggerated increase in perceived pain. These effects are

well recognized in studies of relative valuation of pain (Winston

et al., 2014; Vlaev et al., 2009) and offset hypoalgesia and onset

hyperalgesia (Sprenger et al., 2018; Grill and Coghill, 2002; Yelle

et al., 2009).

Neural Implementation of Endogenous Analgesia

The primary effector pathway for endogenous control (both

hypo- and hyperalgesia) is known to involve descending control

via the PAG to rostral ventral medulla, to the dorsal horn of the

spinal cord (Heinricher et al., 2009). What has been harder to

ascertain is which higher brain sites instruct this pathway, and

where and how the amount of descending control is computed.

One of the difficulties is that many classic paradigms of endog-

enous control may actually involve several distinct mechanisms,

so it is difficult to relate computational mechanisms to specific

neural loci without a considerable degree of uncertainty. For

instance, placebo analgesia can involve all four of the above

mechanisms. However, several cortical regions seem to play

a key role, including regions of anterior cingulate cortex,

dorsolateral prefrontal cortex, and insula (Wiech, 2016; Tracey,

2010). More specifically, the pregenual anterior cingulate cortex

(pgACC) has emerged as the most consistently implicated

cortical region in human endogenous control paradigms,

including in placebo and expectancy hypoalgesia (Wager et al.,

2004; Bingel et al., 2006; Eippert et al., 2009), uncertainty-based

analgesia (Zhang et al., 2018a, 2018b), controllability (Salomons

et al., 2007, 2015), habituation (Bingel et al., 2007), stress-

induced analgesia (Yilmaz et al., 2010), and even analgesia

induced by motor cortex stimulation (Peyron et al., 2007). The

pgACC is highly opioid rich and sits within an anatomical network

with connections to PAG and other subcortical regions involved

in pain and learning, including amygdala, VMPFC, hippocampus,
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lateral orbitofrontal cortex (OFC), and PFC (Margulies et al.,

2007; Vogt, 2005). These sites are central to pain and reward

learning and directly implicated in control by decision conflict

(Fields, 2018), sensory inference (B€uchel et al., 2014), and value

learning (Craig, 2003; Seymour et al., 2004; Ploghaus et al.,

1999). Furthermore, the pgACC is also implicated in both rodent

models and human clinical cases of chronic pain (Qu et al., 2011;

Segerdahl et al., 2018; Mano et al., 2018).

What has been less clear is the specificity of modulation of

ascending pathways in the dorsal horn. An inherent paradox of

endogenous control paradox is that it risks degrading the infor-

mation that pain carries as a predictive stimulus. Hence, it is

likely that at least some aspects of discriminitive information

must be selectively preserved in endogeonous control in the

ascending pathways (Box 1). Indeed, psychologically, preserva-

tion of discriminative perception accompanying analgesia with

opioids and cingulotomy is well described (Melzack and Casey,

1968) and forms the basis of a conventional notion of dissocia-

bility of affective and discriminative pain processing in putative

‘‘medial and lateral pain systems,’’ respectively (Vogt and Sikes,

2000; Corder et al., 2019). Recent evidence indicates that this

selectivity may be mediated by preferential control of C-fibers

over A-delta fibers in the dorsal horn (Heinricher et al., 2009),

which fits with the notion that the A-delta fiber pathways carry

more refined discriminative information.

Translation to Chronic Pain
Tonic or persistent pain after injury serves several physiological

functions. First, it has a direct effect on mood and cognition,

encouraging rest and recuperation by reducing motivation to

engage in non-essential reward-guided activity, which is less

important for homeostatic priorities. Second, it represents a

state from which reduction or cessation of pain becomes a

new motivational goal and hence frames relief as an objective

function for appetitive RL. Third, when accompanied by hyperal-

gesia and allodynia, it sensitizes otherwise less or non-noxious

stimuli to drive pain learning, which is clearly adaptive given

that the area of injury may be more prone to further injury than

normal.

This raises the question as to why physiologically persistent

pain outlives its usefulness to become pathologically persistent

pain in some individuals. Clearly, chronic pain is heterogeneous,

and many forms of chronic pain could simply reflect a normal

brain response to increased nociceptive input at peripheral or

spinal levels. More commonly, however, it is likely that peripheral

and central factors interact to generate the chronic pain state:

persistent nociceptive signals are further amplified and main-

tained by aberrant brain processes.

The RL model of pain illustrates many specific computational

mechanisms that could hypothetically contribute to this process.

These could be perceptual: with persistent pain reflecting an

inference of the state of injury but subject to an excessive and

irrefutable belief that this is the case biasing perceptual inference

(a sort of ‘‘self-fulfilling prophecy’’ [Jepma et al., 2018]). Or it

could be motivational: such as excessive aversive valuation,

elevated or asymmetrical aversive learning rates, over-general-

ization, loss of any component of endogenous control, reduced

extinction of movement-related fear, excessive dread, aberrant
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sequential learning, and so on. This may have either a direct

effect on pain perception or an indirect effect: in the fear-

avoidance model of musculoskeletal pain, excessive fear

learning of movement leads to inactivity, which itself causes

increased tissue injury through secondary means (Vlaeyen and

Linton, 2000).

From a computational perspective, therefore, it is likely that in-

dividual factors (i.e., the parameters of the RL model) act as indi-

vidual risk factors for chronic pain, that subsequently interact to

generate the chronic pain phenotype given appropriate external

events (such as a precipitating tissue injury). This would define a

‘‘computome’’ of chronic pain risk and illustrates many ways in

which some of the individual factors might be shared with co-

incident psychiatric conditions, such as depression and anxiety

(Figure 3). This framework also offers a computational framework

to start to address some of the neurobiological differences seen

in RL-linked circuits in chronic pain patients, including VMPFC

and nucleus accumbens (Baliki et al., 2010, 2012; Mano et al.,

2018). However, given the complexity of the RL model (in terms

of its architecture and large number of parameters), it strongly

appeals to simulation methods to help predict how different

factors might conspire together to generate chronic pain risk

(Seymour and Lee, 2019).

Conclusions
Both theory and evidence point to a view of pain as a precision

signal that guides prospective behavior to minimize harm

through learning. The pain system has been shaped through

evolution by the complexity and diversity of actual threats in

the natural world, but, in particular, it has faced four problems

that have had a dominant impact on its architecture. The first

is how to learn about harm both near and far into the future

(the credit assignment problem), which is solved by the predic-

tive value learning system defined by RL. The second is how

to balance speed of response with processing sophistication

(a type of speed-accuracy dilemma), which is solved by having

a nested hierarchical architecture that spans rapid reflexes to in-

ternal models, and which interact through endogenous control.

The third is how to balance information acquisition about threat

with the concurrent need to avoid it (the information sampling

dilemma), which is solved by endogenous fine-tuning of pain to

maximize its value as a learning signal. And the fourth is how

to suppress pain when needed, while not suppressing the infor-

mation it carries, which is solved by having dissociable discrim-

inative and affective subcomponents of pain. Overall, the RL

model of the pain system illustrates computationally how these

solutions are implemented in the brain, and how this drives

safe, efficient, rapid, and effective pain behavior.

Themodel also offers insight into the three broad issues in pain

neuroscience raised in the introduction. From the perspective of

the representation of pain in the brain (the ‘‘pain matrix’’), it is

clear that pain is constructed not only from nociceptive input,

but also from a set of cortical and subcortical components that

compute the effective magnitude of pain as a control signal.

That this implies that subjective pain will be best estimated

from responses in multiple regions is consistent with general

network and connectivity (Kucyi and Davis, 2015) and multivar-

iate ‘‘signatures’’ of pain (Wager et al., 2013; Woo et al., 2015;



Figure 3. The Hypothetical Chronic Pain Computome
The RL model involves a large set of parameters that determine the way in
which learning and decision making operate within the control framework.
Several of these have been proposed to be involved with not only chronic pain,
but also other disorders associated with aversive learning, including anxiety
and depression. The figure shows a schematic of how a series of hypothetical
factors might operate together to create an overall risk for chronic pain, given
an appropriate peripheral drive from an injury, and these factors might
have different roles at different points in the pain chronification process.
Importantly, the way these factors interact is determined by the complexity of
the computational (RL) model, which defines the information-processing
operations they govern, which means predicting how different combinations
determine risk may require advanced simulation platforms (Seymour and
Lee, 2019).
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Marquand et al., 2010; Zunhammer et al., 2018) but goes beyond

these by highlighting the importance of understanding exactly

what each of the nodes in the pain network do (i.e., pain as

a computational network). However, it is also consistent with

cortical specificity models, because as long as endogenous
modulation is primarily descending, there should still be a

restricted cortical response that primarily reflects pain aversive

intensity after modulation (for example, in posterior insula or

mid-anterior cingulate cortex [Segerdahl et al., 2015; Kragel

et al., 2018; Craig and Craig, 2009]). In other words, although

there is always the most information available from a broad set

of brain regions (involving processes that are not individually

unique to pain), it must also be the case that unique and funda-

mental representations of discriminative features and pain value

are bound together to yield the unique subjective experience of

pain. However, key questions remain, and perhaps the most

important is knowing where in the brain internal representations

of pain used for cognitive planning and control are coded

(i.e., where is the ‘‘cognitive map’’ of pain?).

From the perspective of the subjectivity of pain, the RL model

challenges the primacy of self-report. This is because at a

fundamental level pain concerns control, and so control behavior

should serve as the ultimate measure of pain. Irrespective of

the problems associated with self-report scales (Stewart et al.,

2005), pain leads to a broad set of learning and control behaviors

that can be objectively measured, and the conscious perception

of pain merely serves these functions. This speaks to Melzack’s

and Casey’s man-in-the-brain problem—pain perception is

merely a link (albeit it a critical one) in a self-organizing control

circuit, rather than a terminal node that informs an elusive higher

controller. On this basis, the RL model’s prediction is that all

aspects of endogenous control should be reflected in subse-

quent choice behavior, and this remains an important prediction

for future studies (see Box 1).

Finally, the model yields a concept of pain as a signal that is

tuned precisely to its function as a control signal. The concept

that pain is modulated presupposes that pain is a sensory noci-

ceptive signal whose primary role is to retrospectively estimate

the objective intensity of a stimulus and then needs to be tuned

to support whatever behavior is required at the time, i.e., the view

of modulation of pain as post-perceptual processing. But as a

prospective control signal, pain behaves in precisely the way it

needs, and hence should not be considered to be modulated

at all. Although the factors that lead to the tuning of pain may

be difficult to experimentally observe and objectify (such as

complex social information about forthcoming pain), this doesn’t

mean that the brain doesn’t estimate and represent these

quantities in a precise manner. Ultimately, endogenous control

illustrates how pain is constructed on a moment-by-moment

basis based on an complex but objectively definable integration

of broad sources of information.
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Eroféeva, M.N. (1921). Further observations upon conditioned reflexes to
nocuous stimuli. Bulletin of the Institute of Lesgaft 3.

Fanselow, M.S. (1994). Neural organization of the defensive behavior system
responsible for fear. Psychon. Bull. Rev. 1, 429–438.

Fanselow, M.S., and Lester, L.S. (1988). A functional behavioristic approach to
aversively motivated behavior: Predatory imminence as a determinant of the
topography of defensive behavior. In Evolution and Learning, R.C. Bolles
and M.D. Beecher, eds. (Lawrence Erlbaum Associates), pp. 185–212.

Fields, H.L. (2006). A motivation-decision model of pain: the role of opioids. In
Proceedings of the 11th World Congress on Pain, H. Flor, ed., pp. 449–459.

Fields, H.L. (2018). How expectations influence pain. Pain 159 (Suppl 1 ),
S3–S10.

Fiser, J., Berkes, P., Orbán, G., and Lengyel, M. (2010). Statistically optimal
perception and learning: from behavior to neural representations. Trends
Cogn. Sci. 14, 119–130.

Frederick, S., Loewenstein, G., and O’donoghue, T. (2002). Time discounting
and time preference: A critical review. J. Econ. Lit. 40, 351–401.

Friston, K. (2010). The free-energy principle: a unified brain theory? Nat. Rev.
Neurosci 11, 127.

http://refhub.elsevier.com/S0896-6273(19)30082-0/sref2
http://refhub.elsevier.com/S0896-6273(19)30082-0/sref2
http://refhub.elsevier.com/S0896-6273(19)30082-0/sref3
http://refhub.elsevier.com/S0896-6273(19)30082-0/sref3
http://refhub.elsevier.com/S0896-6273(19)30082-0/sref3
http://refhub.elsevier.com/S0896-6273(19)30082-0/sref4
http://refhub.elsevier.com/S0896-6273(19)30082-0/sref4
http://refhub.elsevier.com/S0896-6273(19)30082-0/sref4
http://refhub.elsevier.com/S0896-6273(19)30082-0/sref5
http://refhub.elsevier.com/S0896-6273(19)30082-0/sref5
http://refhub.elsevier.com/S0896-6273(19)30082-0/sref5
http://refhub.elsevier.com/S0896-6273(19)30082-0/sref6
http://refhub.elsevier.com/S0896-6273(19)30082-0/sref6
http://refhub.elsevier.com/S0896-6273(19)30082-0/sref6
http://refhub.elsevier.com/S0896-6273(19)30082-0/sref7
http://refhub.elsevier.com/S0896-6273(19)30082-0/sref7
http://refhub.elsevier.com/S0896-6273(19)30082-0/sref7
http://refhub.elsevier.com/S0896-6273(19)30082-0/sref8
http://refhub.elsevier.com/S0896-6273(19)30082-0/sref9
http://refhub.elsevier.com/S0896-6273(19)30082-0/sref9
http://refhub.elsevier.com/S0896-6273(19)30082-0/sref9
http://refhub.elsevier.com/S0896-6273(19)30082-0/sref10
http://refhub.elsevier.com/S0896-6273(19)30082-0/sref10
http://refhub.elsevier.com/S0896-6273(19)30082-0/sref10
http://refhub.elsevier.com/S0896-6273(19)30082-0/sref11
http://refhub.elsevier.com/S0896-6273(19)30082-0/sref11
http://refhub.elsevier.com/S0896-6273(19)30082-0/sref11
http://refhub.elsevier.com/S0896-6273(19)30082-0/sref11
http://refhub.elsevier.com/S0896-6273(19)30082-0/sref12
http://refhub.elsevier.com/S0896-6273(19)30082-0/sref12
http://refhub.elsevier.com/S0896-6273(19)30082-0/sref12
http://refhub.elsevier.com/S0896-6273(19)30082-0/sref13
http://refhub.elsevier.com/S0896-6273(19)30082-0/sref13
http://refhub.elsevier.com/S0896-6273(19)30082-0/sref13
http://refhub.elsevier.com/S0896-6273(19)30082-0/sref13
http://refhub.elsevier.com/S0896-6273(19)30082-0/sref14
http://refhub.elsevier.com/S0896-6273(19)30082-0/sref14
http://refhub.elsevier.com/S0896-6273(19)30082-0/sref15
http://refhub.elsevier.com/S0896-6273(19)30082-0/sref15
http://refhub.elsevier.com/S0896-6273(19)30082-0/sref16
http://refhub.elsevier.com/S0896-6273(19)30082-0/sref16
http://refhub.elsevier.com/S0896-6273(19)30082-0/sref16
http://refhub.elsevier.com/S0896-6273(19)30082-0/sref16
http://refhub.elsevier.com/S0896-6273(19)30082-0/sref17
http://refhub.elsevier.com/S0896-6273(19)30082-0/sref17
http://refhub.elsevier.com/S0896-6273(19)30082-0/sref17
http://refhub.elsevier.com/S0896-6273(19)30082-0/sref18
http://refhub.elsevier.com/S0896-6273(19)30082-0/sref18
http://refhub.elsevier.com/S0896-6273(19)30082-0/sref18
http://refhub.elsevier.com/S0896-6273(19)30082-0/sref19
http://refhub.elsevier.com/S0896-6273(19)30082-0/sref19
http://refhub.elsevier.com/S0896-6273(19)30082-0/sref19
http://refhub.elsevier.com/S0896-6273(19)30082-0/sref20
http://refhub.elsevier.com/S0896-6273(19)30082-0/sref20
http://refhub.elsevier.com/S0896-6273(19)30082-0/sref20
http://refhub.elsevier.com/S0896-6273(19)30082-0/sref21
http://refhub.elsevier.com/S0896-6273(19)30082-0/sref21
http://refhub.elsevier.com/S0896-6273(19)30082-0/sref22
http://refhub.elsevier.com/S0896-6273(19)30082-0/sref22
http://refhub.elsevier.com/S0896-6273(19)30082-0/sref23
http://refhub.elsevier.com/S0896-6273(19)30082-0/sref23
http://refhub.elsevier.com/S0896-6273(19)30082-0/sref23
http://refhub.elsevier.com/S0896-6273(19)30082-0/sref24
http://refhub.elsevier.com/S0896-6273(19)30082-0/sref24
http://refhub.elsevier.com/S0896-6273(19)30082-0/sref25
http://refhub.elsevier.com/S0896-6273(19)30082-0/sref25
http://refhub.elsevier.com/S0896-6273(19)30082-0/sref26
http://refhub.elsevier.com/S0896-6273(19)30082-0/sref26
http://refhub.elsevier.com/S0896-6273(19)30082-0/sref27
http://refhub.elsevier.com/S0896-6273(19)30082-0/sref27
http://refhub.elsevier.com/S0896-6273(19)30082-0/sref28
http://refhub.elsevier.com/S0896-6273(19)30082-0/sref28
http://refhub.elsevier.com/S0896-6273(19)30082-0/sref28
http://refhub.elsevier.com/S0896-6273(19)30082-0/sref29
http://refhub.elsevier.com/S0896-6273(19)30082-0/sref30
http://refhub.elsevier.com/S0896-6273(19)30082-0/sref30
http://refhub.elsevier.com/S0896-6273(19)30082-0/sref31
http://refhub.elsevier.com/S0896-6273(19)30082-0/sref31
http://refhub.elsevier.com/S0896-6273(19)30082-0/sref31
http://refhub.elsevier.com/S0896-6273(19)30082-0/sref32
http://refhub.elsevier.com/S0896-6273(19)30082-0/sref32
http://refhub.elsevier.com/S0896-6273(19)30082-0/sref33
http://refhub.elsevier.com/S0896-6273(19)30082-0/sref33
http://refhub.elsevier.com/S0896-6273(19)30082-0/sref34
http://refhub.elsevier.com/S0896-6273(19)30082-0/sref34
http://refhub.elsevier.com/S0896-6273(19)30082-0/sref34
http://refhub.elsevier.com/S0896-6273(19)30082-0/sref35
http://refhub.elsevier.com/S0896-6273(19)30082-0/sref35
http://refhub.elsevier.com/S0896-6273(19)30082-0/sref36
http://refhub.elsevier.com/S0896-6273(19)30082-0/sref36
http://refhub.elsevier.com/S0896-6273(19)30082-0/sref37
http://refhub.elsevier.com/S0896-6273(19)30082-0/sref37
http://refhub.elsevier.com/S0896-6273(19)30082-0/sref38
http://refhub.elsevier.com/S0896-6273(19)30082-0/sref38
http://refhub.elsevier.com/S0896-6273(19)30082-0/sref38
http://refhub.elsevier.com/S0896-6273(19)30082-0/sref38
http://refhub.elsevier.com/S0896-6273(19)30082-0/sref39
http://refhub.elsevier.com/S0896-6273(19)30082-0/sref39
http://refhub.elsevier.com/S0896-6273(19)30082-0/sref39
http://refhub.elsevier.com/S0896-6273(19)30082-0/sref40
http://refhub.elsevier.com/S0896-6273(19)30082-0/sref40
http://refhub.elsevier.com/S0896-6273(19)30082-0/sref40
http://refhub.elsevier.com/S0896-6273(19)30082-0/sref40
http://refhub.elsevier.com/S0896-6273(19)30082-0/sref41
http://refhub.elsevier.com/S0896-6273(19)30082-0/sref41
http://refhub.elsevier.com/S0896-6273(19)30082-0/sref42
http://refhub.elsevier.com/S0896-6273(19)30082-0/sref42
http://refhub.elsevier.com/S0896-6273(19)30082-0/sref43
http://refhub.elsevier.com/S0896-6273(19)30082-0/sref43
http://refhub.elsevier.com/S0896-6273(19)30082-0/sref43
http://refhub.elsevier.com/S0896-6273(19)30082-0/sref43
http://refhub.elsevier.com/S0896-6273(19)30082-0/sref44
http://refhub.elsevier.com/S0896-6273(19)30082-0/sref44
http://refhub.elsevier.com/S0896-6273(19)30082-0/sref45
http://refhub.elsevier.com/S0896-6273(19)30082-0/sref45
http://refhub.elsevier.com/S0896-6273(19)30082-0/sref45
http://refhub.elsevier.com/S0896-6273(19)30082-0/sref46
http://refhub.elsevier.com/S0896-6273(19)30082-0/sref46
http://refhub.elsevier.com/S0896-6273(19)30082-0/sref46
http://refhub.elsevier.com/S0896-6273(19)30082-0/sref47
http://refhub.elsevier.com/S0896-6273(19)30082-0/sref47
http://refhub.elsevier.com/S0896-6273(19)30082-0/sref48
http://refhub.elsevier.com/S0896-6273(19)30082-0/sref48


Neuron

Review
Gerber, B., Yarali, A., Diegelmann, S., Wotjak, C.T., Pauli, P., and Fendt, M.
(2014). Pain-relief learning in flies, rats, and man: basic research and applied
perspectives. Learn. Mem. 21, 232–252.

Gershman, S.J., Norman, K.A., and Niv, Y. (2015). Discovering latent causes in
reinforcement learning. Curr. Opin. Behav. Sci. 5, 43–50.

Geuter, S., Boll, S., Eippert, F., and B€uchel, C. (2017). Functional dissociation
of stimulus intensity encoding and predictive coding of pain in the insula. eLife
6, https://doi.org/10.7554/eLife.24770.

Grahl, A., Onat, S., and B€uchel, C. (2018). The periaqueductal gray and
Bayesian integration in placebo analgesia. eLife 7, e32930.

Grill, J.D., and Coghill, R.C. (2002). Transient analgesia evoked by noxious
stimulus offset. J. Neurophysiol. 87, 2205–2208.

Groessl, F., Munsch, T., Meis, S., Griessner, J., Kaczanowska, J., Pliota, P.,
Kargl, D., Badurek, S., Kraitsy, K., Rassoulpour, A., et al. (2018). Dorsal
tegmental dopamine neurons gate associative learning of fear. Nat. Neurosci
21, 952.

Heinricher, M.M., Tavares, I., Leith, J.L., and Lumb, B.M. (2009). Descending
control of nociception: Specificity, recruitment and plasticity. Brain Res. Brain
Res. Rev. 60, 214–225.

Herry, C., and Johansen, J.P. (2014). Encoding of fear learning and memory in
distributed neuronal circuits. Nat. Neurosci. 17, 1644–1654.

Hird, E.J., Charalambous, C., El-Deredy, W., Jones, A.K., and Talmi, D. (2018).
Boundary effects of expectation in human pain perception. bioRxiv, 467738.

Jeon, D., Kim, S., Chetana, M., Jo, D., Ruley, H.E., Lin, S.Y., Rabah, D., Kinet,
J.P., and Shin, H.S. (2010). Observational fear learning involves affective pain
system and Ca v 1.2 Ca 2+ channels in ACC. Nat. Neurosci 13, 482–488.

Jepma, M., Koban, L., van Doorn, J., Jones, M., and Wager, T.D. (2018).
Behavioural and neural evidence for self-reinforcing expectancy effects on
pain. Nat. Hum. Behav 2, 838–855.

Johansen, J.P., Fields, H.L., and Manning, B.H. (2001). The affective compo-
nent of pain in rodents: direct evidence for a contribution of the anterior cingu-
late cortex. Proc. Natl. Acad. Sci. USA 98, 8077–8082.

Jones, A.K., Brown, W.D., Friston, K.J., Qi, L.Y., and Frackowiak, R.S. (1991).
Cortical and subcortical localization of response to pain in man using positron
emission tomography. Proc. Biol. Sci. 244, 39–44.

Kahneman, D., Fredrickson, B.L., Schreiber, C.A., and Redelmeier, D.A.
(1993). When more pain is preferred to less: Adding a better end. Psychol.
Sci. 4, 401–405.

Kahneman, D., Wakker, P.P., and Sarin, R. (1997). Back to Bentham? Explo-
rations of experienced utility. Q. J. Econ. 112, 375–406.

Keramati, M., and Gutkin, B. (2014). Homeostatic reinforcement learning for
integrating reward collection and physiological stability. eLife 3, e04811.

Knill, D.C., and Pouget, A. (2004). The Bayesian brain: the role of uncertainty in
neural coding and computation. Trends Neurosci. 27, 712–719.

Koban, L., Jepma, M., Geuter, S., and Wager, T.D. (2017). What’s in a
word? How instructions, suggestions, and social information change pain
and emotion. Neurosci. Biobehav. Rev. 81 (Pt A), 29–42.

Koban, L., Kusko, D., and Wager, T.D. (2018). Generalization of learned pain
modulation depends on explicit learning. Acta Psychol. (Amst.) 184, 75–84.

Konorski, J. (1948). Conditioned reflexes and neuron organization (CUP
Archive).

Kragel, P.A., Kano, M., Van Oudenhove, L., Ly, H.G., Dupont, P., Rubio, A.,
Delon-Martin, C., Bonaz, B.L., Manuck, S.B., Gianaros, P.J., et al. (2018).
Generalizable representations of pain, cognitive control, and negative emotion
in medial frontal cortex. Nat. Neurosci 21, 283.

Kucyi, A., and Davis, K.D. (2015). The dynamic pain connectome. Trends Neu-
rosci. 38, 86–95.

Lawson, R.P., Seymour, B., Loh, E., Lutti, A., Dolan, R.J., Dayan, P., Weiskopf,
N., and Roiser, J.P. (2014). The habenula encodes negative motivational value
associated with primary punishment in humans. Proc. Natl. Acad. Sci. USA
111, 11858–11863.

LeDoux, J., and Daw, N.D. (2018). Surviving threats: neural circuit and compu-
tational implications of a new taxonomy of defensive behaviour. Nat. Rev. Neu-
rosci. 19, 269–282.

Lee, J.H., Seymour, B., Leibo, J.Z., An, S.J., and Lee, S.W. (2019). Toward
high-performance, memory-efficient, and fast reinforcement learning—Les-
sons from decision neuroscience. Science Robotics 4.

Legrain, V., Damme, S.V., Eccleston, C., Davis, K.D., Seminowicz, D.A., and
Crombez, G. (2009). A neurocognitive model of attention to pain: behavioral
and neuroimaging evidence. Pain 144, 230–232.

Li, J., Schiller, D., Schoenbaum, G., Phelps, E.A., and Daw, N.D. (2011).
Differential roles of human striatum and amygdala in associative learning.
Nat. Neurosci. 14, 1250–1252.

Lloyd, K., and Dayan, P. (2018). Pavlovian-instrumental interactions in active
avoidance: The bark of neutral trials. Brain Res. Published online October 9,
2018. https://doi.org/10.1016/j.brainres.2018.10.011.

Loewenstein, G. (1987). Anticipation and the valuation of delayed consump-
tion. Econ. J. (Lond.) 97, 666–684.

Mackintosh, N.J. (1983). Conditioning and Associative Learning (Clarendon
Press Oxford).

Madarasz, T.J., Diaz-Mataix, L., Akhand, O., Ycu, E.A., LeDoux, J.E., and
Johansen, J.P. (2016). Evaluation of ambiguous associations in the amygdala
by learning the structure of the environment. Nat. Neurosci 19, 965.

Maia, T.V. (2010). Two-factor theory, the actor-critic model, and conditioned
avoidance. Learn. Behav. 38, 50–67.

Maier, S.F., Drugan, R.C., and Grau, J.W. (1982). Controllability, coping
behavior, and stress-induced analgesia in the rat. Pain 12, 47–56.

Mano, H., Kotecha, G., Leibnitz, K., Matsubara, T., Sprenger, C., Nakae, A.,
Shenker, N., Shibata, M., Voon, V., Yoshida, W., et al. (2018). Classification
and characterisation of brain network changes in chronic back pain: A multi-
center study. Wellcome Open Res. 3, 19.

Margulies, D.S., Kelly, A.M., Uddin, L.Q., Biswal, B.B., Castellanos, F.X., and
Milham, M.P. (2007). Mapping the functional connectivity of anterior cingulate
cortex. Neuroimage 37, 579–588.

Marquand, A., Howard, M., Brammer, M., Chu, C., Coen, S., and
Mourão-Miranda, J. (2010). Quantitative prediction of subjective pain intensity
from whole-brain fMRI data using Gaussian processes. Neuroimage 49,
2178–2189.

Melzack, R., and Casey, K.L. (1968). Sensory, motivational, and central control
determinants of pain. In International Symposium on the Skin Senses, D. Ken-
shalo, ed. (C.C. Thomas), pp. 423–435.

Melzack, R., and Wall, P.D. (1965). Pain mechanisms: a new theory. Science
150, 971–979.

Menegas, W., Akiti, K., Amo, R., Uchida, N., and Watabe-Uchida, M. (2018).
Dopamine neurons projecting to the posterior striatum reinforce avoidance
of threatening stimuli. Nat. Neurosci. 21, 1421–1430.

Millner, A.J., Gershman, S.J., Nock, M.K., and den Ouden, H.E.M. (2018).
Pavlovian control of escape and avoidance. J. Cogn. Neurosci 30, 1379–1390.

Momennejad, I., Russek, E.M., Cheong, J.H., Botvinick, M.H., Daw, N., and
Gershman, S.J. (2017). The successor representation in human reinforcement
learning. Nat. Hum. Behav 1, 680.

Morton, D.L., El-Deredy, W., Watson, A., and Jones, A.K. (2010). Placebo
analgesia as a case of a cognitive style driven by prior expectation. Brain
Res. 1359, 137–141.

Moutoussis, M., Bentall, R.P., Williams, J., and Dayan, P. (2008). A temporal
difference account of avoidance learning. Network 19, 137–160.

Navratilova, E., Xie, J.Y., Okun, A., Qu, C., Eyde, N., Ci, S., Ossipov, M.H.,
King, T., Fields, H.L., and Porreca, F. (2012). Pain relief produces negative
reinforcement through activation of mesolimbic reward-valuation circuitry.
Proc. Natl. Acad. Sci. USA 109, 20709–20713.
Neuron 101, March 20, 2019 1039

http://refhub.elsevier.com/S0896-6273(19)30082-0/sref49
http://refhub.elsevier.com/S0896-6273(19)30082-0/sref49
http://refhub.elsevier.com/S0896-6273(19)30082-0/sref49
http://refhub.elsevier.com/S0896-6273(19)30082-0/sref50
http://refhub.elsevier.com/S0896-6273(19)30082-0/sref50
https://doi.org/10.7554/eLife.24770
http://refhub.elsevier.com/S0896-6273(19)30082-0/sref52
http://refhub.elsevier.com/S0896-6273(19)30082-0/sref52
http://refhub.elsevier.com/S0896-6273(19)30082-0/sref52
http://refhub.elsevier.com/S0896-6273(19)30082-0/sref53
http://refhub.elsevier.com/S0896-6273(19)30082-0/sref53
http://refhub.elsevier.com/S0896-6273(19)30082-0/sref54
http://refhub.elsevier.com/S0896-6273(19)30082-0/sref54
http://refhub.elsevier.com/S0896-6273(19)30082-0/sref54
http://refhub.elsevier.com/S0896-6273(19)30082-0/sref54
http://refhub.elsevier.com/S0896-6273(19)30082-0/sref55
http://refhub.elsevier.com/S0896-6273(19)30082-0/sref55
http://refhub.elsevier.com/S0896-6273(19)30082-0/sref55
http://refhub.elsevier.com/S0896-6273(19)30082-0/sref56
http://refhub.elsevier.com/S0896-6273(19)30082-0/sref56
http://refhub.elsevier.com/S0896-6273(19)30082-0/sref57
http://refhub.elsevier.com/S0896-6273(19)30082-0/sref57
http://refhub.elsevier.com/S0896-6273(19)30082-0/sref58
http://refhub.elsevier.com/S0896-6273(19)30082-0/sref58
http://refhub.elsevier.com/S0896-6273(19)30082-0/sref58
http://refhub.elsevier.com/S0896-6273(19)30082-0/sref59
http://refhub.elsevier.com/S0896-6273(19)30082-0/sref59
http://refhub.elsevier.com/S0896-6273(19)30082-0/sref59
http://refhub.elsevier.com/S0896-6273(19)30082-0/sref60
http://refhub.elsevier.com/S0896-6273(19)30082-0/sref60
http://refhub.elsevier.com/S0896-6273(19)30082-0/sref60
http://refhub.elsevier.com/S0896-6273(19)30082-0/sref61
http://refhub.elsevier.com/S0896-6273(19)30082-0/sref61
http://refhub.elsevier.com/S0896-6273(19)30082-0/sref61
http://refhub.elsevier.com/S0896-6273(19)30082-0/sref62
http://refhub.elsevier.com/S0896-6273(19)30082-0/sref62
http://refhub.elsevier.com/S0896-6273(19)30082-0/sref62
http://refhub.elsevier.com/S0896-6273(19)30082-0/sref63
http://refhub.elsevier.com/S0896-6273(19)30082-0/sref63
http://refhub.elsevier.com/S0896-6273(19)30082-0/sref64
http://refhub.elsevier.com/S0896-6273(19)30082-0/sref64
http://refhub.elsevier.com/S0896-6273(19)30082-0/sref65
http://refhub.elsevier.com/S0896-6273(19)30082-0/sref65
http://refhub.elsevier.com/S0896-6273(19)30082-0/sref66
http://refhub.elsevier.com/S0896-6273(19)30082-0/sref66
http://refhub.elsevier.com/S0896-6273(19)30082-0/sref66
http://refhub.elsevier.com/S0896-6273(19)30082-0/sref67
http://refhub.elsevier.com/S0896-6273(19)30082-0/sref67
http://refhub.elsevier.com/S0896-6273(19)30082-0/sref68
http://refhub.elsevier.com/S0896-6273(19)30082-0/sref68
http://refhub.elsevier.com/S0896-6273(19)30082-0/sref69
http://refhub.elsevier.com/S0896-6273(19)30082-0/sref69
http://refhub.elsevier.com/S0896-6273(19)30082-0/sref69
http://refhub.elsevier.com/S0896-6273(19)30082-0/sref69
http://refhub.elsevier.com/S0896-6273(19)30082-0/sref70
http://refhub.elsevier.com/S0896-6273(19)30082-0/sref70
http://refhub.elsevier.com/S0896-6273(19)30082-0/sref71
http://refhub.elsevier.com/S0896-6273(19)30082-0/sref71
http://refhub.elsevier.com/S0896-6273(19)30082-0/sref71
http://refhub.elsevier.com/S0896-6273(19)30082-0/sref71
http://refhub.elsevier.com/S0896-6273(19)30082-0/sref72
http://refhub.elsevier.com/S0896-6273(19)30082-0/sref72
http://refhub.elsevier.com/S0896-6273(19)30082-0/sref72
http://refhub.elsevier.com/S0896-6273(19)30082-0/sref73
http://refhub.elsevier.com/S0896-6273(19)30082-0/sref73
http://refhub.elsevier.com/S0896-6273(19)30082-0/sref73
http://refhub.elsevier.com/S0896-6273(19)30082-0/sref74
http://refhub.elsevier.com/S0896-6273(19)30082-0/sref74
http://refhub.elsevier.com/S0896-6273(19)30082-0/sref74
http://refhub.elsevier.com/S0896-6273(19)30082-0/sref75
http://refhub.elsevier.com/S0896-6273(19)30082-0/sref75
http://refhub.elsevier.com/S0896-6273(19)30082-0/sref75
https://doi.org/10.1016/j.brainres.2018.10.011
http://refhub.elsevier.com/S0896-6273(19)30082-0/sref77
http://refhub.elsevier.com/S0896-6273(19)30082-0/sref77
http://refhub.elsevier.com/S0896-6273(19)30082-0/sref78
http://refhub.elsevier.com/S0896-6273(19)30082-0/sref78
http://refhub.elsevier.com/S0896-6273(19)30082-0/sref79
http://refhub.elsevier.com/S0896-6273(19)30082-0/sref79
http://refhub.elsevier.com/S0896-6273(19)30082-0/sref79
http://refhub.elsevier.com/S0896-6273(19)30082-0/sref80
http://refhub.elsevier.com/S0896-6273(19)30082-0/sref80
http://refhub.elsevier.com/S0896-6273(19)30082-0/sref81
http://refhub.elsevier.com/S0896-6273(19)30082-0/sref81
http://refhub.elsevier.com/S0896-6273(19)30082-0/sref82
http://refhub.elsevier.com/S0896-6273(19)30082-0/sref82
http://refhub.elsevier.com/S0896-6273(19)30082-0/sref82
http://refhub.elsevier.com/S0896-6273(19)30082-0/sref82
http://refhub.elsevier.com/S0896-6273(19)30082-0/sref83
http://refhub.elsevier.com/S0896-6273(19)30082-0/sref83
http://refhub.elsevier.com/S0896-6273(19)30082-0/sref83
http://refhub.elsevier.com/S0896-6273(19)30082-0/sref84
http://refhub.elsevier.com/S0896-6273(19)30082-0/sref84
http://refhub.elsevier.com/S0896-6273(19)30082-0/sref84
http://refhub.elsevier.com/S0896-6273(19)30082-0/sref84
http://refhub.elsevier.com/S0896-6273(19)30082-0/sref85
http://refhub.elsevier.com/S0896-6273(19)30082-0/sref85
http://refhub.elsevier.com/S0896-6273(19)30082-0/sref85
http://refhub.elsevier.com/S0896-6273(19)30082-0/sref86
http://refhub.elsevier.com/S0896-6273(19)30082-0/sref86
http://refhub.elsevier.com/S0896-6273(19)30082-0/sref87
http://refhub.elsevier.com/S0896-6273(19)30082-0/sref87
http://refhub.elsevier.com/S0896-6273(19)30082-0/sref87
http://refhub.elsevier.com/S0896-6273(19)30082-0/sref88
http://refhub.elsevier.com/S0896-6273(19)30082-0/sref88
http://refhub.elsevier.com/S0896-6273(19)30082-0/sref89
http://refhub.elsevier.com/S0896-6273(19)30082-0/sref89
http://refhub.elsevier.com/S0896-6273(19)30082-0/sref89
http://refhub.elsevier.com/S0896-6273(19)30082-0/sref90
http://refhub.elsevier.com/S0896-6273(19)30082-0/sref90
http://refhub.elsevier.com/S0896-6273(19)30082-0/sref90
http://refhub.elsevier.com/S0896-6273(19)30082-0/sref91
http://refhub.elsevier.com/S0896-6273(19)30082-0/sref91
http://refhub.elsevier.com/S0896-6273(19)30082-0/sref92
http://refhub.elsevier.com/S0896-6273(19)30082-0/sref92
http://refhub.elsevier.com/S0896-6273(19)30082-0/sref92
http://refhub.elsevier.com/S0896-6273(19)30082-0/sref92


Neuron

Review
Navratilova, E., Atcherley, C.W., and Porreca, F. (2015). Brain circuits encod-
ing reward from pain relief. Trends Neurosci. 38, 741–750.

Norbury, A., Robbins, T.W., and Seymour, B. (2018). Value generalization in
human avoidance learning. eLife 7, e34779.

Olsson, A., and Phelps, E.A. (2007). Social learning of fear. Nat. Neurosci
10, 1095.

Onat, S., and B€uchel, C. (2015). The neuronal basis of fear generalization in
humans. Nat. Neurosci. 18, 1811–1818.

Ongaro, G., and Kaptchuk, T.J. (2019). Symptom perception, placebo effects,
and the Bayesian brain. Pain 160, 1–4.

Ozawa, T., Ycu, E.A., Kumar, A., Yeh, L.F., Ahmed, T., Koivumaa, J., and
Johansen, J.P. (2017). A feedback neural circuit for calibrating aversive mem-
ory strength. Nat. Neurosci 20, 90.

Pearce, J.M., Montgomery, A., and Dickinson, A. (1981). Contralateral transfer
of inhibitory and excitatory eyelid conditioning in the rabbit. Q. J. Exp. Psychol.
Sec. B 33, 45–61.

Peyron, R., Faillenot, I., Mertens, P., Laurent, B., and Garcia-Larrea, L. (2007).
Motor cortex stimulation in neuropathic pain. Correlations between analgesic
effect and hemodynamic changes in the brain. A PET study. Neuroimage 34,
310–321.

Pezzulo, G., Rigoli, F., and Friston, K. (2015). Active inference, homeostatic
regulation and adap-tive behavioural control. Prog. Neurobiol. 134, 17–35.

Piccolo, L., Libera, F., Bonarini, A., Seymour, B., and Ishiguro, H. (2018). Pain
and self-preservation in autonomous robots: From neurobiological models
to psychiatric disease. In 7th Joint IEEE International Conference on Develop-
ment and Learning and on Epigenetic Robotics, ICDL-EpiRob 2017,
pp. 263–270.

Ploghaus, A., Tracey, I., Gati, J.S., Clare, S., Menon, R.S., Matthews, P.M., and
Rawlins, J.N. (1999). Dissociating pain from its anticipation in the human brain.
Science 284, 1979–1981.

Qi, S., Hassabis, D., Sun, J., Guo, F., Daw, N., and Mobbs, D. (2018). How
cognitive and reactive fear circuits optimize escape decisions in humans.
Proc. Natl. Acad. Sci. USA 115, 3186–3191.

Qu, C., King, T., Okun, A., Lai, J., Fields, H.L., and Porreca, F. (2011). Lesion of
the rostral anterior cingulate cortex eliminates the aversiveness of sponta-
neous neuropathic pain following partial or complete axotomy. Pain 152,
1641–1648.

Rachman, S., and Arntz, A. (1991). The overprediction and underprediction of
pain. Clin. Psychol. Rev. 11, 339–355.

Rescorla, R.A. (1988). Pavlovian conditioning: It’s not what you think it is. Am.
Psychol 43, 151.

Rescorla, R.A., and Wagner, A.R. (1972). A theory of Pavlovian conditioning:
Variations in the effectiveness of reinforcement and nonreinforcement. In Clas-
sical Conditioning II: Current Research and Theory, A.H. Black and W.F. Pro-
kasy, eds. (Appleton-Century-Crofts), pp. 64–99.

Robbins, T.W., Gillan, C.M., Smith, D.G., de Wit, S., and Ersche, K.D. (2012).
Neurocognitive endophenotypes of impulsivity and compulsivity: towards
dimensional psychiatry. Trends Cogn. Sci. 16, 81–91.

Roy, M., Shohamy, D., Daw, N., Jepma, M., Wimmer, G.E., and Wager, T.D.
(2014). Representation of aversive prediction errors in the human periaque-
ductal gray. Nat. Neurosci. 17, 1607–1612.

Salomons, T.V., Johnstone, T., Backonja, M.M., Shackman, A.J., and David-
son, R.J. (2007). Individual differences in the effects of perceived controllability
on pain perception: critical role of the prefrontal cortex. J. Cogn. Neurosci. 19,
993–1003.

Salomons, T.V., Nusslock, R., Detloff, A., Johnstone, T., and Davidson, R.J.
(2015). Neural emotion regulation circuitry underlying anxiolytic effects of
perceived control over pain. J. Cogn. Neurosci. 27, 222–233.

Segerdahl, A.R., Mezue, M., Okell, T.W., Farrar, J.T., and Tracey, I. (2015). The
dorsal posterior insula subserves a fundamental role in human pain. Nat. Neu-
rosci 18, 499–500.
1040 Neuron 101, March 20, 2019
Segerdahl, A.R., Themistocleous, A.C., Fido, D., Bennett, D.L., and Tracey, I.
(2018). A brain-based pain facilitation mechanism contributes to painful dia-
betic polyneuropathy. Brain 141, 357–364.

Seymour, B., and Dolan, R. (2013). Emotion, motivation, and pain. In Wall &
Melzack’s Textbook of Pain, S. McMahon, ed. (Elsevier Health Sciences),
pp. 248–255.

Seymour, B., and Lee, S.W. (2019). Decision-making in brains and robots: the
case for an interdisciplinary approach. Curr. Opin. Behav. Sci. 26, 137–145.

Seymour, B., O’Doherty, J.P., Dayan, P., Koltzenburg, M., Jones, A.K., Dolan,
R.J., Friston, K.J., and Frackowiak, R.S. (2004). Temporal difference models
describe higher-order learning in humans. Nature 429, 664–667.

Seymour, B., O’Doherty, J.P., Koltzenburg, M., Wiech, K., Frackowiak, R.,
Friston, K., and Dolan, R. (2005). Opponent appetitive-aversive neural pro-
cesses underlie predictive learning of pain relief. Nat. Neurosci. 8, 1234–1240.

Seymour, B., Daw, N.D., Roiser, J.P., Dayan, P., and Dolan, R. (2012).
Serotonin selectively modulates reward value in human decision-making.
J. Neurosci. 32, 5833–5842.

Singh, S., Lewis, R.L., and Barto, A.G. (2009). Where do rewards come from. In
Proceedings of the Annual Conference of the Cognitive Science Society,
pp. 2601–2606.

Sprenger, C., Stenmans, P., Tinnermann, A., and B€uchel, C. (2018). Evidence
for a spinal involvement in temporal pain contrast enhancement. Neuroimage
183, 788–799.

Stewart, N., Brown, G.D., andChater, N. (2005). Absolute identification by rela-
tive judgment. Psychol. Rev. 112, 881.

Story, G.W., Vlaev, I., Seymour, B., Winston, J.S., Darzi, A., and Dolan, R.J.
(2013). Dread and the disvalue of future pain. PLoS Comput. Biol 9, e1003335.

Sutton, R.S., and Barto, A.G. (1981). Toward a modern theory of adaptive net-
works: expectation and prediction. Psychol. Rev. 88, 135.

Sutton, R.S., and Barto, A.G. (1998). Reinforcement learning: An introduction,
Vol. 1. 1 (Cambridge: MIT press).

Tabor, A., and Burr, C. (2019). Bayesian Learning Models of Pain: A Call to Ac-
tion. Curr. Opin. Behav. Sci. 26, 54–61.

Tabor, A., Thacker, M.A., Moseley, G.L., and Körding, K.P. (2017). Pain: a sta-
tistical account. PLoS Comput. Biol 13, e1005142.

Talmi, D., Seymour, B., Dayan, P., and Dolan, R.J. (2008). Human pavlovian-
instrumental transfer. J. Neurosci. 28, 360–368.

Taylor, V.A., Chang, L., Rainville, P., and Roy, M. (2017). Learned expectations
and uncertainty facilitate pain during classical conditioning. Pain 158,
1528–1537.

Tolman, E.C. (1948). Cognitive maps in rats and men. Psychol. Rev. 55, 189.

Tracey, I. (2010). Getting the pain you expect: mechanisms of placebo, nocebo
and reappraisal effects in humans. Nat. Med 16, 1277.

Treede, R.-D., Kenshalo, D.R., Gracely, R.H., and Jones, A.K.P. (1999). The
cortical representation of pain. Pain 79, 105–111.

Van Damme, S., Legrain, V., Vogt, J., and Crombez, G. (2010). Keeping pain in
mind: amotivational account of attention to pain. Neurosci. Biobehav. Rev. 34,
204–213.

Vlaev, I., Seymour, B., Dolan, R.J., and Chater, N. (2009). The price of pain and
the value of suffering. Psychol. Sci. 20, 309–317.

Vlaeyen, J.W., and Linton, S.J. (2000). Fear-avoidance and its consequences
in chronic musculoskeletal pain: a state of the art. Pain 85, 317–332.

Vogt, B.A. (2005). Pain and emotion interactions in subregions of the cingulate
gyrus. Nat. Rev. Neurosci 6, 533.

Vogt, B.A., and Sikes, R.W. (2000). The medial pain system, cingulate cortex,
and parallel processing of nociceptive information. Prog. Brain Res. 122,
223–235.

http://refhub.elsevier.com/S0896-6273(19)30082-0/sref93
http://refhub.elsevier.com/S0896-6273(19)30082-0/sref93
http://refhub.elsevier.com/S0896-6273(19)30082-0/sref94
http://refhub.elsevier.com/S0896-6273(19)30082-0/sref94
http://refhub.elsevier.com/S0896-6273(19)30082-0/sref95
http://refhub.elsevier.com/S0896-6273(19)30082-0/sref95
http://refhub.elsevier.com/S0896-6273(19)30082-0/sref96
http://refhub.elsevier.com/S0896-6273(19)30082-0/sref96
http://refhub.elsevier.com/S0896-6273(19)30082-0/sref96
http://refhub.elsevier.com/S0896-6273(19)30082-0/sref97
http://refhub.elsevier.com/S0896-6273(19)30082-0/sref97
http://refhub.elsevier.com/S0896-6273(19)30082-0/sref98
http://refhub.elsevier.com/S0896-6273(19)30082-0/sref98
http://refhub.elsevier.com/S0896-6273(19)30082-0/sref98
http://refhub.elsevier.com/S0896-6273(19)30082-0/sref99
http://refhub.elsevier.com/S0896-6273(19)30082-0/sref99
http://refhub.elsevier.com/S0896-6273(19)30082-0/sref99
http://refhub.elsevier.com/S0896-6273(19)30082-0/sref100
http://refhub.elsevier.com/S0896-6273(19)30082-0/sref100
http://refhub.elsevier.com/S0896-6273(19)30082-0/sref100
http://refhub.elsevier.com/S0896-6273(19)30082-0/sref100
http://refhub.elsevier.com/S0896-6273(19)30082-0/sref101
http://refhub.elsevier.com/S0896-6273(19)30082-0/sref101
http://refhub.elsevier.com/S0896-6273(19)30082-0/sref102
http://refhub.elsevier.com/S0896-6273(19)30082-0/sref102
http://refhub.elsevier.com/S0896-6273(19)30082-0/sref102
http://refhub.elsevier.com/S0896-6273(19)30082-0/sref102
http://refhub.elsevier.com/S0896-6273(19)30082-0/sref102
http://refhub.elsevier.com/S0896-6273(19)30082-0/sref103
http://refhub.elsevier.com/S0896-6273(19)30082-0/sref103
http://refhub.elsevier.com/S0896-6273(19)30082-0/sref103
http://refhub.elsevier.com/S0896-6273(19)30082-0/sref104
http://refhub.elsevier.com/S0896-6273(19)30082-0/sref104
http://refhub.elsevier.com/S0896-6273(19)30082-0/sref104
http://refhub.elsevier.com/S0896-6273(19)30082-0/sref105
http://refhub.elsevier.com/S0896-6273(19)30082-0/sref105
http://refhub.elsevier.com/S0896-6273(19)30082-0/sref105
http://refhub.elsevier.com/S0896-6273(19)30082-0/sref105
http://refhub.elsevier.com/S0896-6273(19)30082-0/sref106
http://refhub.elsevier.com/S0896-6273(19)30082-0/sref106
http://refhub.elsevier.com/S0896-6273(19)30082-0/sref107
http://refhub.elsevier.com/S0896-6273(19)30082-0/sref107
http://refhub.elsevier.com/S0896-6273(19)30082-0/sref108
http://refhub.elsevier.com/S0896-6273(19)30082-0/sref108
http://refhub.elsevier.com/S0896-6273(19)30082-0/sref108
http://refhub.elsevier.com/S0896-6273(19)30082-0/sref108
http://refhub.elsevier.com/S0896-6273(19)30082-0/sref109
http://refhub.elsevier.com/S0896-6273(19)30082-0/sref109
http://refhub.elsevier.com/S0896-6273(19)30082-0/sref109
http://refhub.elsevier.com/S0896-6273(19)30082-0/sref110
http://refhub.elsevier.com/S0896-6273(19)30082-0/sref110
http://refhub.elsevier.com/S0896-6273(19)30082-0/sref110
http://refhub.elsevier.com/S0896-6273(19)30082-0/sref111
http://refhub.elsevier.com/S0896-6273(19)30082-0/sref111
http://refhub.elsevier.com/S0896-6273(19)30082-0/sref111
http://refhub.elsevier.com/S0896-6273(19)30082-0/sref111
http://refhub.elsevier.com/S0896-6273(19)30082-0/sref112
http://refhub.elsevier.com/S0896-6273(19)30082-0/sref112
http://refhub.elsevier.com/S0896-6273(19)30082-0/sref112
http://refhub.elsevier.com/S0896-6273(19)30082-0/sref113
http://refhub.elsevier.com/S0896-6273(19)30082-0/sref113
http://refhub.elsevier.com/S0896-6273(19)30082-0/sref113
http://refhub.elsevier.com/S0896-6273(19)30082-0/sref114
http://refhub.elsevier.com/S0896-6273(19)30082-0/sref114
http://refhub.elsevier.com/S0896-6273(19)30082-0/sref114
http://refhub.elsevier.com/S0896-6273(19)30082-0/sref115
http://refhub.elsevier.com/S0896-6273(19)30082-0/sref115
http://refhub.elsevier.com/S0896-6273(19)30082-0/sref115
http://refhub.elsevier.com/S0896-6273(19)30082-0/sref116
http://refhub.elsevier.com/S0896-6273(19)30082-0/sref116
http://refhub.elsevier.com/S0896-6273(19)30082-0/sref117
http://refhub.elsevier.com/S0896-6273(19)30082-0/sref117
http://refhub.elsevier.com/S0896-6273(19)30082-0/sref117
http://refhub.elsevier.com/S0896-6273(19)30082-0/sref118
http://refhub.elsevier.com/S0896-6273(19)30082-0/sref118
http://refhub.elsevier.com/S0896-6273(19)30082-0/sref118
http://refhub.elsevier.com/S0896-6273(19)30082-0/sref119
http://refhub.elsevier.com/S0896-6273(19)30082-0/sref119
http://refhub.elsevier.com/S0896-6273(19)30082-0/sref119
http://refhub.elsevier.com/S0896-6273(19)30082-0/sref120
http://refhub.elsevier.com/S0896-6273(19)30082-0/sref120
http://refhub.elsevier.com/S0896-6273(19)30082-0/sref120
http://refhub.elsevier.com/S0896-6273(19)30082-0/sref121
http://refhub.elsevier.com/S0896-6273(19)30082-0/sref121
http://refhub.elsevier.com/S0896-6273(19)30082-0/sref121
http://refhub.elsevier.com/S0896-6273(19)30082-0/sref121
http://refhub.elsevier.com/S0896-6273(19)30082-0/sref122
http://refhub.elsevier.com/S0896-6273(19)30082-0/sref122
http://refhub.elsevier.com/S0896-6273(19)30082-0/sref123
http://refhub.elsevier.com/S0896-6273(19)30082-0/sref123
http://refhub.elsevier.com/S0896-6273(19)30082-0/sref124
http://refhub.elsevier.com/S0896-6273(19)30082-0/sref124
http://refhub.elsevier.com/S0896-6273(19)30082-0/sref125
http://refhub.elsevier.com/S0896-6273(19)30082-0/sref125
http://refhub.elsevier.com/S0896-6273(19)30082-0/sref126
http://refhub.elsevier.com/S0896-6273(19)30082-0/sref126
http://refhub.elsevier.com/S0896-6273(19)30082-0/sref127
http://refhub.elsevier.com/S0896-6273(19)30082-0/sref127
http://refhub.elsevier.com/S0896-6273(19)30082-0/sref128
http://refhub.elsevier.com/S0896-6273(19)30082-0/sref128
http://refhub.elsevier.com/S0896-6273(19)30082-0/sref129
http://refhub.elsevier.com/S0896-6273(19)30082-0/sref129
http://refhub.elsevier.com/S0896-6273(19)30082-0/sref129
http://refhub.elsevier.com/S0896-6273(19)30082-0/sref130
http://refhub.elsevier.com/S0896-6273(19)30082-0/sref131
http://refhub.elsevier.com/S0896-6273(19)30082-0/sref131
http://refhub.elsevier.com/S0896-6273(19)30082-0/sref132
http://refhub.elsevier.com/S0896-6273(19)30082-0/sref132
http://refhub.elsevier.com/S0896-6273(19)30082-0/sref133
http://refhub.elsevier.com/S0896-6273(19)30082-0/sref133
http://refhub.elsevier.com/S0896-6273(19)30082-0/sref133
http://refhub.elsevier.com/S0896-6273(19)30082-0/sref134
http://refhub.elsevier.com/S0896-6273(19)30082-0/sref134
http://refhub.elsevier.com/S0896-6273(19)30082-0/sref135
http://refhub.elsevier.com/S0896-6273(19)30082-0/sref135
http://refhub.elsevier.com/S0896-6273(19)30082-0/sref136
http://refhub.elsevier.com/S0896-6273(19)30082-0/sref136
http://refhub.elsevier.com/S0896-6273(19)30082-0/sref137
http://refhub.elsevier.com/S0896-6273(19)30082-0/sref137
http://refhub.elsevier.com/S0896-6273(19)30082-0/sref137


Neuron

Review
Wager, T.D., Rilling, J.K., Smith, E.E., Sokolik, A., Casey, K.L., Davidson, R.J.,
Kosslyn, S.M., Rose, R.M., and Cohen, J.D. (2004). Placebo-induced changes
in FMRI in the anticipation and experience of pain. Science 303, 1162–1167.

Wager, T.D., Atlas, L.Y., Lindquist, M.A., Roy, M., Woo, C.W., and Kross, E.
(2013). An fMRI-based neurologic signature of physical pain. N. Engl. J.
Med. 368, 1388–1397.

Wang, O., Lee, S.W., O’Doherty, J., Seymour, B., and Yoshida, W. (2018).
Model-based and model-free pain avoidance learning. Brain Neurosci. Adv.
2, 2398212818772964.

Wiech, K. (2016). Deconstructing the sensation of pain: The influence of cogni-
tive processes on pain perception. Science 354, 584–587.

Wiech, K., Kalisch, R., Weiskopf, N., Pleger, B., Stephan, K.E., and Dolan, R.J.
(2006). Anterolateral prefrontal cortex mediates the analgesic effect of ex-
pected and perceived control over pain. J. Neurosci. 26, 11501–11509.

Wilson, R.C., Geana, A., White, J.M., Ludvig, E.A., and Cohen, J.D. (2014).
Humans use directed and random exploration to solve the explore-exploit
dilemma. J. Exp. Psychol. Gen 143, 2074.

Winston, J.S., Vlaev, I., Seymour, B., Chater, N., and Dolan, R.J. (2014).
Relative valuation of pain in human orbitofrontal cortex. J. Neurosci. 34,
14526–14535.

Wittmann, B.C., Daw, N.D., Seymour, B., and Dolan, R.J. (2008). Striatal activ-
ity underlies novelty-based choice in humans. Neuron 58, 967–973.

Woo, C.-W., Roy, M., Buhle, J.T., and Wager, T.D. (2015). Distinct brain
systems mediate the effects of nociceptive input and self-regulation on pain.
PLoS Biol 13, e1002036.
Yelle, M.D., Oshiro, Y., Kraft, R.A., and Coghill, R.C. (2009). Temporal filtering
of nociceptive information by dynamic activation of endogenous pain modula-
tory systems. J. Neurosci. 29, 10264–10271.

Yilmaz, P., Diers, M., Diener, S., Rance, M., Wessa, M., and Flor, H. (2010).
Brain correlates of stress-induced analgesia. Pain 151, 522–529.

Yoshida, W., Seymour, B., Koltzenburg, M., and Dolan, R.J. (2013). Uncer-
tainty increases pain: evidence for a novel mechanism of pain modulation
involving the periaqueductal gray. J. Neurosci. 33, 5638–5646.

Yu, A.J., and Dayan, P. (2005). Uncertainty, neuromodulation, and attention.
Neuron 46, 681–692.

Zaman, J., Vanpaemel, W., Aelbrecht, C., Tuerlinckx, F., and Vlaeyen, J.W.S.
(2017). Biased pain reports through vicarious information: A computational
approach to investigate the role of uncertainty. Cognition 169, 54–60.

Zhang, S., Mano, H., Ganesh, G., Robbins, T., and Seymour, B. (2016).
Dissociable learning processes underlie human pain conditioning. Curr. Biol.
26, 52–58.

Zhang, S., Mano, H., Lee, M., Yoshida, W., Kawato, M., Robbins, T.W., and
Seymour, B. (2018a). The control of tonic pain by active relief learning. eLife
7, e31949.

Zhang, S., Yoshida, W., Mano, H., Yanagisawa, T., Shibata, K., Kawato, M.,
and Seymour, B. (2018b). Endogenous Controllability of Closed-loop Brain
Machine Interfaces for Pain. bioRxiv. https://doi.org/10.1101/369736.

Zunhammer, M., Bingel, U., and Wager, T.D.; Placebo Imaging Consortium
(2018). Placebo effects on the neurologic pain signature: a meta-analysis
of individual participant functional magnetic resonance imaging data. JAMA
Neurol. 75, 1321–1330.
Neuron 101, March 20, 2019 1041

http://refhub.elsevier.com/S0896-6273(19)30082-0/sref138
http://refhub.elsevier.com/S0896-6273(19)30082-0/sref138
http://refhub.elsevier.com/S0896-6273(19)30082-0/sref138
http://refhub.elsevier.com/S0896-6273(19)30082-0/sref139
http://refhub.elsevier.com/S0896-6273(19)30082-0/sref139
http://refhub.elsevier.com/S0896-6273(19)30082-0/sref139
http://refhub.elsevier.com/S0896-6273(19)30082-0/sref140
http://refhub.elsevier.com/S0896-6273(19)30082-0/sref140
http://refhub.elsevier.com/S0896-6273(19)30082-0/sref140
http://refhub.elsevier.com/S0896-6273(19)30082-0/sref141
http://refhub.elsevier.com/S0896-6273(19)30082-0/sref141
http://refhub.elsevier.com/S0896-6273(19)30082-0/sref142
http://refhub.elsevier.com/S0896-6273(19)30082-0/sref142
http://refhub.elsevier.com/S0896-6273(19)30082-0/sref142
http://refhub.elsevier.com/S0896-6273(19)30082-0/sref143
http://refhub.elsevier.com/S0896-6273(19)30082-0/sref143
http://refhub.elsevier.com/S0896-6273(19)30082-0/sref143
http://refhub.elsevier.com/S0896-6273(19)30082-0/sref144
http://refhub.elsevier.com/S0896-6273(19)30082-0/sref144
http://refhub.elsevier.com/S0896-6273(19)30082-0/sref144
http://refhub.elsevier.com/S0896-6273(19)30082-0/sref145
http://refhub.elsevier.com/S0896-6273(19)30082-0/sref145
http://refhub.elsevier.com/S0896-6273(19)30082-0/sref146
http://refhub.elsevier.com/S0896-6273(19)30082-0/sref146
http://refhub.elsevier.com/S0896-6273(19)30082-0/sref146
http://refhub.elsevier.com/S0896-6273(19)30082-0/sref147
http://refhub.elsevier.com/S0896-6273(19)30082-0/sref147
http://refhub.elsevier.com/S0896-6273(19)30082-0/sref147
http://refhub.elsevier.com/S0896-6273(19)30082-0/sref148
http://refhub.elsevier.com/S0896-6273(19)30082-0/sref148
http://refhub.elsevier.com/S0896-6273(19)30082-0/sref149
http://refhub.elsevier.com/S0896-6273(19)30082-0/sref149
http://refhub.elsevier.com/S0896-6273(19)30082-0/sref149
http://refhub.elsevier.com/S0896-6273(19)30082-0/sref150
http://refhub.elsevier.com/S0896-6273(19)30082-0/sref150
http://refhub.elsevier.com/S0896-6273(19)30082-0/sref151
http://refhub.elsevier.com/S0896-6273(19)30082-0/sref151
http://refhub.elsevier.com/S0896-6273(19)30082-0/sref151
http://refhub.elsevier.com/S0896-6273(19)30082-0/sref152
http://refhub.elsevier.com/S0896-6273(19)30082-0/sref152
http://refhub.elsevier.com/S0896-6273(19)30082-0/sref152
http://refhub.elsevier.com/S0896-6273(19)30082-0/sref153
http://refhub.elsevier.com/S0896-6273(19)30082-0/sref153
http://refhub.elsevier.com/S0896-6273(19)30082-0/sref153
https://doi.org/10.1101/369736
http://refhub.elsevier.com/S0896-6273(19)30082-0/sref155
http://refhub.elsevier.com/S0896-6273(19)30082-0/sref155
http://refhub.elsevier.com/S0896-6273(19)30082-0/sref155
http://refhub.elsevier.com/S0896-6273(19)30082-0/sref155

	Pain: A Precision Signal for Reinforcement Learning and Control
	Background
	The RL Model
	The Credit Assignment Problem
	Innate Responses
	Pavlovian Learning
	Instrumental Learning
	Cognitive Learning
	Conscious Pain Perception and Interactions between Controllers

	Endogenous Control
	Modulation by Sensory Inference
	Modulation by Predictive Value
	Modulation by Decision Conflict
	Modulation by Informational Value
	Neural Implementation of Endogenous Analgesia

	Translation to Chronic Pain
	Conclusions
	Acknowledgments
	References


